223 research outputs found

    Multiperiodicity, modulations, and flip-flops in variable star light curves III. Carrier fit analysis of LQ Hydrae photometry for 1982-2014

    Get PDF
    Conclusions. The evolution of the spot distribution of the object is found to be very chaotic, with no clear signs of an azimuthal dynamo wave that would persist over longer timescales, although the short-lived coherent structures occasionally observed do not rotate with the same speed as the mean spot distribution. The most likely explanation of the bimodal period distribution is attributed to the high-and low-latitude spot formation regions confirmed from Doppler imaging and Zeeman Doppler imaging.</p

    Topological changes in the magnetic field of LQ Hya during an activity minimum

    Get PDF
    Aims. Previous studies have related surface temperature maps, obtained with the Doppler imaging (DI) technique, of LQ Hya with long-term photometry. Here, we compare surface magnetic field maps, obtained with the Zeeman Doppler imaging (ZDI) technique, with contemporaneous photometry, with the aim of quantifying the star's magnetic cycle characteristics.Methods. We inverted Stokes IV spectropolarimetry, obtained with the HARPSpol and ESPaDOnS instruments, into magnetic field and surface brightness maps using a tomographic inversion code that models high signal-to-noise ratio mean line profiles produced by the least squares deconvolution (LSD) technique. The maps were compared against long-term ground-based photometry acquired with the T3 0.40 m Automatic Photoelectric Telescope (APT) at Fairborn Observatory, which offers a proxy for the spot cycle of the star, as well as with chromospheric Ca II H&K activity derived from the observed spectra.Results. The magnetic field and surface brightness maps reveal similar patterns relative to previous DI and ZDI studies: nonaxisymmetric polar magnetic field structure, void of fields at mid-latitudes, and a complex structure in the equatorial regions. There is a weak but clear tendency of the polar structures to be linked with a strong radial field and the equatorial ones with the azimuthal field. We find a polarity reversal in the radial field between 2016 and 2017 that is coincident with a spot minimum seen in the long-term photometry, although the precise relation of chromospheric activity to the spot activity remains complex and unclear. The inverted field strengths cannot be easily related with the observed spottedness, but we find that they are partially connected to the retrieved field complexity.Conclusions. This field topology and the dominance of the poloidal field component, when compared to global magnetoconvection models for rapidly rotating young suns, could be explained by a turbulent dynamo, where differential rotation does not play a major role (so-called alpha(2)Omega(2) or alpha(2) dynamos) and axi- and non-axisymmetric modes are excited simultaneously. The complex equatorial magnetic field structure could arise from the twisted (helical) wreaths often seen in these simulations, while the polar feature would be connected to the mostly poloidal non-axisymmetric component that has a smooth spatial structure.</p

    Crystal structure of a tripartite complex between C3dg, C-terminal domains of factor H and OspE of Borrelia burgdorferi

    Get PDF
    Complement is an important part of innate immunity. The alternative pathway of complement is activated when the main opsonin, C3b coats non-protected surfaces leading to opsonisation, phagocytosis and cell lysis. The alternative pathway is tightly controlled to prevent autoactivation towards host cells. The main regulator of the alternative pathway is factor H (FH), a soluble glycoprotein that terminates complement activation in multiple ways. FH recognizes host cell surfaces via domains 19–20 (FH19-20). All microbes including Borrelia burgdorferi, the causative agent of Lyme borreliosis, must evade complement activation to allow the infectious agent to survive in its host. One major mechanism that Borrelia uses is to recruit FH from host. Several outer surface proteins (Osp) have been described to bind FH via the C-terminus, and OspE is one of them. Here we report the structure of the tripartite complex formed by OspE, FH19-20 and C3dg at 3.18 Å, showing that OspE and C3dg can bind simultaneously to FH19-20. This verifies that FH19-20 interacts via the “common microbial binding site” on domain 20 with OspE and simultaneously and independently via domain 19 with C3dg. The spatial organization of the tripartite complex explains how OspE on the bacterial surface binds FH19-20, leaving FH fully available to protect the bacteria against complement. Additionally, formation of tripartite complex between FH, microbial protein and C3dg might enable enhanced protection, particularly on those regions on the bacteria where previous complement activation led to deposition of C3d. This might be especially important for slow-growing bacteria that cause chronic disease like Borrelia burgdorferi.Peer reviewe

    Sustainable Phosphorus Loadings from Effective and Cost-Effective Phosphorus Management Around the Baltic Sea

    Get PDF
    Nutrient over-enrichment of the Baltic Sea, accompanied by intensified algal blooms and decreasing water clarity, has aroused widespread concern in the surrounding countries during the last four decades. This work has used a well-tested dynamic mass-balance model to investigate which decrease in total phosphorus loading would be required to meet the environmental goal to restore the trophic state in the Baltic Sea to pre-1960s levels. Furthermore, the extent to which various abatement options may decrease the phosphorus loading in a cost-effective manner has been studied. Upgrading urban sewage treatment in the catchment could, alone or in combination with banning phosphates in detergents, be sufficient to meet the set environmental goal, at an estimated annual basin-wide cost of 0.21–0.43 billion euro. Such a plan would potentially decrease the total phosphorus loading to the Baltic Sea with 6,650–10,200 tonnes per year

    Microbes Bind Complement Inhibitor Factor H via a Common Site

    Get PDF
    To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH). FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why different microbes bind FH via domains 19–20 (FH19-20). We used a selection of FH19-20 point mutants to reveal the binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii). We show that all studied microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH, and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a unique example of convergent evolution resulting in enhanced immune evasion of important pathogens viautilization of a “superevasion site.

    Cadaveric and three-dimensional computed tomography study of the morphology of the scapula with reference to reversed shoulder prosthesis

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>The purpose of this study is to analyze the morphology of the scapula with reference to the glenoid component implantation in reversed shoulder prosthesis, in order to improve primary fixation of the component.</p> <p>Methods</p> <p>Seventy-three 3-dimensional computed tomography of the scapula and 108 scapular dry specimens were analyzed to determine the anterior and posterior length of the glenoid neck, the angle between the glenoid surface and the upper posterior column of the scapula and the angle between the major craneo-caudal glenoid axis and the base of the coracoid process and the upper posterior column.</p> <p>Results</p> <p>The anterior and posterior length of glenoid neck was classified into two groups named "short-neck" and "long-neck" with significant differences between them. The angle between the glenoid surface and the upper posterior column of the scapula was also classified into two different types: type I (mean 50°–52°) and type II (mean 62,50°–64°), with significant differences between them (p < 0,001). The angle between the major craneo-caudal glenoid axis and the base of the coracoid process averaged 18,25° while the angle with the upper posterior column of the scapula averaged 8°.</p> <p>Conclusion</p> <p>Scapular morphological variability advices for individual adjustments of glenoid component implantation in reversed total shoulder prosthesis. Three-dimensional computed tomography of the scapula constitutes an important tool when planning reversed prostheses implantation.</p

    Skin Cancer:Epidemiology, Disease Burden, Pathophysiology, Diagnosis, and Therapeutic Approaches

    Get PDF
    Skin cancer, including both melanoma and non-melanoma, is the most common type of malignancy in the Caucasian population. Firstly, we review the evidence for the observed increase in the incidence of skin cancer over recent decades, and investigate whether this is a true increase or an artefact of greater screening and over-diagnosis. Prevention strategies are also discussed. Secondly, we discuss the complexities and challenges encountered when diagnosing and developing treatment strategies for skin cancer. Key case studies are presented that highlight the practic challenges of choosing the most appropriate treatment for patients with skin cancer. Thirdly, we consider the potential risks and benefits of increased sun exposure. However, this is discussed in terms of the possibility that the avoidance of sun exposure in order to reduce the risk of skin cancer may be less important than the reduction in all-cause mortality as a result of the potential benefits of increased exposure to the sun. Finally, we consider common questions on human papillomavirus infection

    Development of a Bead-Based Multiplex Genotyping Method for Diagnostic Characterization of HPV Infection

    Get PDF
    The accurate genotyping of human papillomavirus (HPV) is clinically important because the oncogenic potential of HPV is dependent on specific genotypes. Here, we described the development of a bead-based multiplex HPV genotyping (MPG) method which is able to detect 20 types of HPV (15 high-risk HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68 and 5 low-risk HPV types 6, 11, 40, 55, 70) and evaluated its accuracy with sequencing. A total of 890 clinical samples were studied. Among these samples, 484 were HPV positive and 406 were HPV negative by consensus primer (PGMY09/11) directed PCR. The genotyping of 484 HPV positive samples was carried out by the bead-based MPG method. The accuracy was 93.5% (95% CI, 91.0–96.0), 80.1% (95% CI, 72.3–87.9) for single and multiple infections, respectively, while a complete type mismatch was observed only in one sample. The MPG method indiscriminately detected dysplasia of several cytological grades including 71.8% (95% CI, 61.5–82.3) of ASCUS (atypical squamous cells of undetermined significance) and more specific for high grade lesions. For women with HSIL (high grade squamous intraepithelial lesion) and SCC diagnosis, 32 women showed a PPV (positive predictive value) of 77.3% (95% CI, 64.8–89.8). Among women >40 years of age, 22 women with histological cervical cancer lesions showed a PPV of 88% (95% CI, 75.3–100). Of the highest risk HPV types including HPV-16, 18 and 31 positive women of the same age groups, 34 women with histological cervical cancer lesions showed a PPV of 77.3% (95% CI, 65.0–89.6). Taken together, the bead-based MPG method could successfully detect high-grade lesions and high-risk HPV types with a high degree of accuracy in clinical samples

    Improved general regression network for protein domain boundary prediction

    Get PDF
    Background: Protein domains present some of the most useful information that can be used to understand protein structure and functions. Recent research on protein domain boundary prediction has been mainly based on widely known machine learning techniques, such as Artificial Neural Networks and Support Vector Machines. In this study, we propose a new machine learning model (IGRN) that can achieve accurate and reliable classification, with significantly reduced computations. The IGRN was trained using a PSSM (Position Specific Scoring Matrix), secondary structure, solvent accessibility information and inter-domain linker index to detect possible domain boundaries for a target sequence. Results: The proposed model achieved average prediction accuracy of 67% on the Benchmark_2 dataset for domain boundary identification in multi-domains proteins and showed superior predictive performance and generalisation ability among the most widely used neural network models. With the CASP7 benchmark dataset, it also demonstrated comparable performance to existing domain boundary predictors such as DOMpro, DomPred, DomSSEA, DomCut and DomainDiscovery with 70.10% prediction accuracy. Conclusion: The performance of proposed model has been compared favourably to the performance of other existing machine learning based methods as well as widely known domain boundary predictors on two benchmark datasets and excels in the identification of domain boundaries in terms of model bias, generalisation and computational requirements. © 2008 Yoo et al; licensee BioMed Central Ltd
    corecore